Automatic Diagnosis of Epilepsy Using Electroencephalogram (EEG) Signal Analysis

نویسندگان

  • M. V Satya
  • Sai Chandra
چکیده

Epilepsy is a very common neurological disorder. Electroencephalogram (EEG) is the major diagnostic tool used for analyzing the human epileptic seizure activity and there is a strong need of an efficient automatic seizure detection using it to ease the diagnosis. This work aims at an automatic system for diagnosis of epilepsy. Here we extract some features like fractal dimensions, sample entropy, Lyapunov exponent, etc of both normal and epileptic EEG signals. These feature values are used as inputs to train classifiers like artificial neural networks, support vector machines, probabilistic neural networks etc., after the training we test the classifier with test EEG data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

Alterations of the electroencephalogram sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy

Introduction: Temporal lobe epilepsy (TLE) is the most common and drug resistant epilepsy in adults. Due to behavioral, morphologic and electrographic similarities, pilocarpine model of epilepsy best resembles TLE. This study was aimed at determination of the changes in electroencephalogram (EEG) sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy. Analysis of thes...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Automatic Identification of Interictal Epileptiform Discharges in Secondary Generalized Epilepsy

Ictal epileptiform discharges (EDs) are characteristic signal patterns of scalp electroencephalogram (EEG) or intracranial EEG (iEEG) recorded from patients with epilepsy, which assist with the diagnosis and characterization of various types of epilepsy. The EEG signal, however, is often recorded from patients with epilepsy for a long period of time, and thus detection and identification of EDs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017